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Abstract This paper describes the design, implemen-
tation, and performance characteristics of a commercial
XQuery processing engine, the BEA streaming XQuery
processor. This XQuery engine was designed to provide
high performance for message processing applications,
i.e., for transforming XML data streams. The engine is a
central component of the 8.1 release of BEA’s WebLogic
Integration (WLI) product. The BEA XQuery engine is
fully compliant with the August 2002 draft of the W3C
XML Query Language specification and we are currently
porting it to the latest version of the XQuery language
(November 2003). A goal of this paper is to describe
how a fully compliant yet efficient XQuery engine has
been built from a few relatively simple components and
well-understood technologies.

1 Introduction

After several years of development in the W3C, XQuery
is starting to gain significant traction as a language for
querying and transforming XML data. Though the W3C
XQuery specification has not yet attained Recommenda-
tion status, it is already beginning to appear in a variety
of products. Examples to date include XML database
systems, XML document repositories, and XML-based
data integration offerings. In addition, of course, XPath—
of which XQuery is a superset—is used in various prod-
ucts including Web browsers. In this paper, we focus on
a new commercial incarnation of the XQuery language
in an XML-centric enterprise application integration sys-
tem. In particular, we provide a detailed overview of a
new XQuery processing engine that was designed specifi-
cally to meet the requirements of application integration.

The XQuery language, in the tradition of prior query
languages such as SQL and OQL, is a closed, declarative,

and strongly-typed language. In contrast to these tradi-
tional query languages, however, XQuery was designed
from the start for use in querying both structured data
(e.g., purchase orders) as well as unstructured data (e.g.,
Web pages). XQuery is a powerful query language: it
has native support for handling over forty built-in data
types, powerful constructs for bulk data processing (i.e.,
for expressing joins, aggregation, and so on), support
for text manipulation, and a notion of document order-
ing that provides a foundation for a variety of interesting
document-oriented queries [CFF+03]. For added power
as well as extensibility, support is provided for the defini-
tion and use of XQuery functions. The language is com-
patible with other W3C standards (e.g., XML Names-
paces and XML Schema). Finally, to make the language
user-friendly, particularly for prior XPath users, many
XQuery expressions provide implicit existential quan-
tification, schema validation, and/or type-casting in or-
der to relieve programmers from always having to invoke
these operations explicitly in their queries.

Because of the wide range of applications for which
XQuery is intended, coupled with its powerful seman-
tics and type system, something of a myth has emerged
that the full XQuery language is going to be very diffi-
cult to implement and that it may be almost impossible
to achieve both performance and scalability when imple-
menting the language. Indeed, most existing XQuery im-
plementations have tackled only a subset of XQuery and
have made a number of simplifying assumptions. One of
the key goals of this paper is to help dispel this myth
by demonstrating that it is indeed possible to implement
the entire XQuery language specification, types and all,
in a manner which is performant for a set of target appli-
cations. To this end, this paper covers the design, imple-
mentation, and performance characteristics of the BEA
streaming XQuery engine, which is now embedded in
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BEA’s WebLogic Integration 8.1 product.1 The engine
implements the entirety of the August 2002 specification
of XQuery and is now being adapted to the latest ver-
sion (November 2003, which is the final version before
XQuery reaches Recommendation status). We describe
some of the unique requirements that drove the design
of the engine, particularly in the area of streaming XML
data handling, and we discuss the ways in which the en-
gine’s architecture was influenced by these requirements.

The remainder of this paper is organized as follows:
Section 2 lists requirements that drove the design of
the BEA streaming XQuery engine. Section 3 gives an
overview of BEA’s WLI 8.1 product, of which the en-
gine is a central component. Section 4 gives an overview
of the architecture of the engine. Section 5 defines the
internal representation of XML data as Token Streams.
Section 6 describes the implementation of the XQuery
type system in the engine. Section 7 contains details of
the compiler and optimizer. Section 8 presents the run-
time system. Section 9 shows the Java interface of the
engine. Section 10 describes how the engine interoperates
with XML data stores. Section 11 presents the results of
performance experiments. Section 12 discusses related
work. Finally, Section 13 contains conclusions.

2 Requirements

BEA is a standards-focused company. As a result, the
BEA streaming XQuery engine had a major requirement
from the outset to implement the entire XQuery rec-
ommendation in a compliant manner. Performance was
also a major requirement for the engine; specifically, the
BEA XQuery engine was designed to provide high per-
formance for message processing applications (i.e., for
streaming XML data). The major needs for message
processing applications of XQuery include: (i) an effi-
cient internal representation of XML data, (ii) the use
of streaming execution (i.e., pipelining) to the largest
extent possible, and (iii) the efficient implementation of
transformations that involve the use of many node con-
structors. Basically, the target XML message process-
ing applications need to quickly reshape XML message
payloads as they pass through the system, requiring a
small memory footprint, the ability to handle a wide
range of message sizes, and efficiency both for locating
data within a message as well as generating new and/or
transformed message content.

While XQuery completeness and excellent message
transformation performance were the top two design goals,
there were a number of additional requirements that in-
fluenced the XQuery engine’s design and implementation
as well:

1 The BEA streaming XQuery engine was formerly known
as the XQRL (pronounced ”squirrel”) engine because it was
developed by a start-up called XQRL, Inc.

– Limited resources: An initial version of the engine
had to be developed by a team of six engineers in
about six months. This level of productivity only
seemed achievable using Java (vs. C or C++) as the
programming language for the implementation.

– Integration into BEA products: The engine was de-
signed to be an embedded component within a set
of BEA products (in particular WLI 8.1). This defi-
nitely mandated the use of Java, and it also required
the development of a powerful Java-to-XQuery inter-
face (referred to as the XDBC interface in Section 9).

– Usability with other components: The engine was de-
signed to be usable with third-party XML parsers,
schema validators, persistent XML stores, etc.

– Deployment environment: The engine must operate
properly in a clustered environment and on multi-
processor machines.

– Evolvability: Since the XQuery specification was un-
stable during the time when the BEA XQuery engine
was initially being developed, it had to be feasible
(and affordable) to evolve the engine over time in
response to changes in the XQuery language specifi-
cation.

3 XQuery in WebLogic Integration 8.1

The BEA WebLogic Platform 8.1 is an integrated prod-
uct suite built around WebLogic Server, a leading high-
end J2EE application server. The suite includes products
for application and process integration (WebLogic In-
tegration), portal development (WebLogic Portal), and
data integration (Liquid Data for WebLogic) as well as
an integrated development environment (WebLogic Work-
shop) that simplifies J2EE application development and
serves as the design center for all of the other Platform
components.

As mentioned earlier, the target application that re-
ally drove the design of the BEA streaming XQuery en-
gine is WebLogic Integration (WLI), BEA’s enterprise
application integration product. WLI is the portion of
the BEA Platform that provides tools to enable com-
panies to rapidly develop and deploy integration-based
applications that communicate with business partners,
automate enterprise business processes, orchestrate ex-
isting Web services and packaged and/or legacy appli-
cations, and receive, transform, and send bits of data
from/to applications throughout an enterprise. WLI 8.1
is a major new release of WLI that focuses heavily on
Web services and on XML based data handling and ma-
nipulation [CBTN02]. As such, the XQuery language
plays a central internal role in WLI 8.1. XQuery is used
for specifying data transformations on messages and on
process variables, i.e., for transforming data such as pur-
chase orders as they flow through the system. XQuery
expressions can also be used to specify the data-driven
flow logic (i.e., the looping and branching) of WLI busi-
ness processes.
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One of the main features required of an application
integration platform is strong support for data transfor-
mations — both at design-time and at runtime. This
is the primary role of the XQuery engine in WLI 8.1,
and BEA is making a significant bet on XQuery being
the right technology for this task. To provide a simple
design-time experience, WLI provides a built-in map-
ping tool that enables integration developers to create
XQuery-based data transformations without coding (i.e.,
without having to work with the syntax of XQuery).
Transformation developers work in terms of a graphical
“map view” that shows the schemas of a transforma-
tion’s XML inputs on the left-hand side and the schema
of the desired XML output on the right-hand side of the
view. Data transformations are specified graphically by
drawing lines between the input and output schemas,
adding functions to the lines when computations are re-
quired, and so on. Based on the graphical “map view”,
WLI 8.1 auto-generates a corresponding XQuery expres-
sion. The resulting query can then be viewed and option-
ally source-edited. (The WLI 8.1 data transformation ed-
itor supports limited two-way editing of XQuery source
queries.) In addition, WLI 8.1 includes a test view that
generates sample data from schemas and allows trans-
formations to be tested right in the IDE.

Single-document XML-to-XML transformations are
the most common form of data transformations for WLI,
but WLI 8.1 actually supports a much broader range
of transformations with the data mapping tool and the
BEA streaming XQuery engine. In addition to single-
input transformations, whose input is one XML message,
the mapper supports the graphical construction of trans-
formations that take multiple XML arguments as input
(i.e., XML joins). Moreover, WLI supports the develop-
ment of data transformations that consume and/or pro-
duce Java objects and binary data objects (i.e., not just
XML arguments). In these non-XML cases, the map-
per still shows the transformation’s input and/or output
types as trees, so the design model remains consistent
across a wide range of potential data types. In the case
of Java objects, WLI 8.1 infers a default XML schema
corresponding to the Java class of interest. In the case of
binary data, WLI 8.1 relies on the use of another WLI
component, called FormatBuilder, which allows develop-
ers to separately specify, test, and persist a set of pars-
ing rules to convert a given binary record format into
a structurally isomorphic XML schema. In these cases,
when a data transformation’s input or output format
is non-XML, a transformation step into or out of XML
form occurs prior to the central XQuery-based trans-
formation; for efficiency, in all cases the actual internal
XML data representation is the Token Stream format
described in section 5.

The other use of XQuery in BEA WLI involves busi-
ness process logic. A typical WLI 8.1 business process
can include a number of XQuery expressions that define
XML-based flow logic for the process. These expressions

can appear in conditional nodes (decision nodes in the
process) that control which branch of the flow should be
processed next. They can also appear in iteration loops
(loop nodes in the process) that drive the process to do
something once for each piece of something else, e.g.,
once for each line item in a purchase order. Unlike data
transformation queries, which tend to involve a number
of nested for-loops and return clauses with lots of node
construction, flow queries mostly fall within the simple
XPath subset of the XQuery language. These queries
are basically simple path expressions over process vari-
ables. This use of XQuery is tool-based as well; a special
expression editor helps developers to construct XPath
expressions for their branching and looping node condi-
tions in business processes.

In addition to WLI, XQuery is used in several other
components of the BEA Platform as well. One such com-
ponent is XmlBeanXmlBeans, which is a Java binding
that provides friendly yet efficient programmatic access
to XML data (see http://xml.apache.org/XmlBeans/).
The XmlBean APIs in the BEA Platform include two
methods, selectPath() and executeQuery(), that permit
developers to use XQuery expressions to declaratively
navigate to a set of nodes of interest in an XmlBean or
to declaratively construct a new XmlBean out of an ex-
isting XmlBean. The BEA streaming XQuery engine is
used within the 8.1 XmlBeans implementation to pro-
cess the executeQuery() requests as well as all but the
simplest of selectPath() requests.2

The final BEA Platform component that utilizes the
XQuery language is Liquid Data for WebLogic, a dis-
tributed, XML-based enterprise information integration
product that BEA offers for use with the Platform. Liq-
uid Data 8.1 is based on a different XQuery engine,
one that does database query pushdown and distributed
query processing, that was developed independently from
the engine that is the focus of this paper. However, work
is currently in progress to merge the features of these
two XQuery engines by extending the BEA streaming
XQuery engine with the requisite pushdown and dis-
tributed query processing capabilities from the current
Liquid Data engine. This merge is motivated by a desire
to have a single XQuery implementation going forward—
avoiding the potential for multiple XQuery dialects, sub-
tle differences in semantics, and also avoiding the engi-
neering cost of maintaining and evolving more than one
set of XQuery engine components going forward.

4 XQuery Engine Overview

A high-level overview of the BEA streaming XQuery en-
gine is given in Figure 1. In terms of packaging, the BEA
XQuery engine is implemented as a library so that it can
be embedded within any Java application or server that

2 Simple predicate-free path expressions are handled di-
rectly by the XmlBeans implementation.
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wishes to use it to manipulate XML data. Java applica-
tions execute XQuery queries and consume their queries’
results through an interface referred to as XDBC; the
name XDBC is derived from JDBC. Each query is parsed,
type-checked, and optimized by the query compiler. The
compiler generates a query plan, which is a tree of oper-
ators that consume data from one another in a cascading
fashion. The plan is interpreted by the runtime system,
which consists of implementations of all the functions
and operators of the XQuery library [MMW03] and of
the XQuery core (e.g., sorts and joins). Additionally,
the runtime system contains an XML parser and an
XML schema validator; these are required when exter-
nal XML data must be processed as part of a query or
when XQuery’s validate function is explicitly or implic-
itly used in a query.

Java Applications (e.g., WebLogic)

XDBC Interface

XQuery Variable bindings 
Context management

Compiler

Function & Operator 
Library

XML Parser and 
Schema Validator

Tokens

TokensXQuery

Variables
Tokens

XML 
Document

Tokens

plan

Runtime

Fig. 1 Overview of the BEA Streaming XQuery Engine

In the BEA XQuery runtime, all XML data is repre-
sented as streams of tokens that are loosely equivalent
to SAX events in their semantics (i.e., a Token Stream
is essentially a depth-first linearization of an XML tree).
Use of the Token Stream, as opposed to querying against
materialized XML trees such as DOM, minimizes the
runtime memory footprint of the query engine. In addi-
tion, use of the Token Stream enables lazy evaluation of
queries. At runtime, each runtime operator consumes its
input one token at a time, and any input data that is not
required is eventually discarded. The Token Stream de-
sign follows the XQuery data model [FMM+03]. Finally,
since the XQuery language ultimately consumes and pro-
duces XQuery data model instances, the BEA XQuery
engine uses the Token Stream model for its XML inputs
and outputs as well as for its runtime. The Token Stream
itself is defined as a Java interface to allow for different
implementations; the default implementation uses sim-
ple Java objects. For external consumption, the engine
has adaptors that developers can use in order to serialize
the Token Stream as XML text or to construct a DOM or

any of several other popular XML representations (e.g.,
SAX, StaX, or XmlBeans) from a Token Stream (not
shown in Figure 1).

5 XML Token Stream

The performance of a data intensive language like XQuery
depends very much on the data representation used to
implement the language’s underlying data model. Be-
cause of this, significant effort went into the design of
the data representation used in the BEA XQuery en-
gine. This section describes the relevant design goals
and then describes the resulting data representation, the
XML Token Stream, in detail. Note that the XQuery lan-
guage is closed under the abstract XQuery data model
[FMM+03]—meaning that the inputs, intermediate re-
sults, and output of an XQuery expression are all in-
stances of this data model. As a consequence, a single,
uniform data representation capable of faithfully captur-
ing the abstract data model can be used throughout the
system in order to simplify the runtime system.

The first design consideration for an XML data rep-
resentation is the granularity at which data is to be ac-
cessed and processed. Traditional relational database en-
gines process data at the tuple level [Gra93]. This works
well for the relational model, where tuples have fairly
uniform (and bounded) sizes, but it is not appropriate
for XML. A given XML node can be arbitrarily large
(e.g., an entire database of 1 GB can be a single doc-
ument node), and sizes can vary dramatically across
nodes within a given sequence of nodes, so streaming
at the level of top-level XML nodes (or items) in a se-
quence is not satisfactory. Given the importance of ef-
fective stream processing for our use cases, a much finer
granularity of data streaming is a must.

Another important consideration for an efficient XML
data representation is the avoidance of copying of data,
when possible, to minimize memory requirements and
query running times. As described early in the paper,
the most important use cases for the XQuery engine in
WLI 8.1 involve XML transformations. Typically, trans-
formations involve many node constructions; creating
new trees and/or copying old trees for each node con-
struction operation would lead to unacceptable perfor-
mance. A high degree of sharing and re-use of XML data
instances is a must for efficiency.

The third representation-related design consideration
involves the question of how much redundancy should be
permitted. Some properties of data in the XQuery data
model can be derived from others, but doing so might
be expensive. A prominent example is the typed value of
an element, which can be computed from the element’s
children and type annotation. The cost of re-computing
properties must be balanced against the space overhead
of representing properties redundantly. Ideally, the data
representation should be flexible so that the query pro-
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cessor can choose which information to store redundantly
based on the given workload.

Based on the above considerations, particularly the
streaming emphasis, we decided to represent XML in-
stances (sequences of atomic values and nodes [FMM+03])
conceptually as arrays—we call the sequence of array en-
tries the XML Token Stream. In the Token Stream, spe-
cial tokens represent the beginnings and endings of doc-
uments, elements and attributes. Single tokens are used
to represent processing instructions, comments, and text
nodes. Special tokens represent simple values of XML
Schema types (e.g., integer values or date values), in-
cluding instances of qualified names (which are also used
for name annotations and for type annotations). An in-
stance of the Token Stream is generated through a pre-
order traversal of the XQuery data model tree structure.
Element nesting is modeled by the nesting of the tokens
that denote the beginnings and endings of elements and
documents.

The Token Stream design was inspired by the popular
SAX interface for XML parsing. SAX events correspond
roughly to tokens in the Token Stream, but there are
two major differences. The first major difference is that
the Token Stream supports the full XQuery data model,
whereas SAX is based on the XML Infoset model. The
Token Stream can represent both typed and untyped
data, and it can represent general sequences of items,
freely intermixing nodes of all kinds and simple values.
SAX is less powerful; it cannot represent typed XML
data or general sequences, rendering it insufficient for
the needs of an XQuery engine (or for an XQuery in-
terface, for that matter). The second major difference is
that the Token Stream was designed to work well in the
context of a pull-based API, whereas the SAX API is
push-based. As discussed in Section 8, a pull-based in-
terface is essential in order to permit lazy evaluation in
the runtime system of the XQuery engine.

The actual Token Stream is relatively straightfor-
ward and can be best described using an example.

5.1 Example

Consider the following element declaration:

<judgement index="11">43.5</judgement>

The parser translates this element into the following
Token Stream (serialized). Note that while the notation
used here is textual, the actual tokens can be represented
in various ways, e.g., as Java objects, or encoded in a
binary and very compact manner (Section 5.4).

[ELEMENT [judgement], [xdt:untyped] ]

[ATTRIBUTE [index], [xdt:untypedAtomic] ]

[CharData "11", [xdt:untypedAtomic] ]

[END ATTRIBUTE]

[TEXT ("43.5", [xdt:untypedAtomic]) ]

[END ELEMENT]

This example shows that there is an ELEMENT to-
ken whose name is judgment and which is not quali-
fied by a namespace in this example. The type of the
judgement element is type xdt:untyped. (xdt refers to
http://www.w3.org/2003/11/xpath-datatypes, the name
space of the XPath specifications in which this specific
type is defined.) The ELEMENT token is followed by an
ATTRIBUTE token whose name is index and whose type
is xdt:untypedAtomic. Following this token is the value
of the attribute (11), which is represented as a CharData
token. An END ATTRIBUTE token closes the attribute dec-
laration. (Note that the value of an attribute can be a
list of values). A TEXT token follows to represent the con-
tent of the element, and finally an END ELEMENT token
closes the element declaration.

The data in the previous example has not been schema-
validated, so the most general types appear in the type
annotations (e.g., xdt:untyped for the element content).
The example data can be validated against the following
XML Schema snippet [Fal01], which describes a complex
type “vote” with an attribute “index” of type xsd:int
and content of type xsd:float:

<xsd:complextype name="vote">

<xsd:simpleContent>

<xsd:extension base="xsd:float">

<xsd:attribute name="index" type="xsd:int"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="judgement" type="vote"/>

The result after validation would be the following
slightly different Token Stream:

[ELEMENT [judgement],

[vote@http://www.bea.com/example]

]

[ATTRIBUTE [index], [xsd:int] ]

[int 11]

[END ATTRIBUTE]

[TEXT ("43.5", [xdt:untypedAtomic]) ]

[float 43.5]

[END ELEMENT]

After validation, the type annotation of the ELEMENT
token is “vote” and that of the ATTRIBUTE is xsd:int.
(xsd refers to the name space of XML Schema.) The
value of the attribute is now a binary int, and the ele-
ment TEXT value is now augmented with the binary float
representation. It should be noted that the XQuery stan-
dard does not mandate having both the original lexical
representation of elements and their typed values, but
some WLI use cases require preservation of the original
lexical representation of messages. Because of these use
cases, both the “untyped” (lexical) and “typed” (binary)
values can be kept in the Token Stream if desired. When
preservation of the original lexical representation is not
required, the Token Stream preserves only the binary
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values and the lexical representation is computed on the
fly whenever needed.

While the XML Token Stream was mainly designed
to serve as the XQuery processor’s internal data repre-
sentation, it turns out to be a useful XML format for
application-level use as well. The Token Stream allows
XML fragments to be managed easily, and it is easy to
serialize, both for transmission on the network and stor-
age on disk (Section 5.4).

5.2 Node Identifiers

The XQuery data model requires each node to have a
unique node identifier. Node identifiers are semantically
required both for duplicate elimination and for compar-
isons (i.e., sorting in document order). Node identifiers
can also be used internally to optimize certain opera-
tions; e.g., parent node references can be cached inside
node identifiers, speeding up reverse traversals.

In the Token Stream, every token that represents a
simple node (i.e., PI, COMMENT, and TEXT) or the be-
ginning of a complex node (i.e., DOCUMENT, ELEMENT,
ATTRIBUTE) can be annotated with a node identifier.
However, not every query needs node identifiers, so node
identifiers are optional in the Token Stream. The de-
cision of whether node identifiers may be needed for a
given query is made by the compiler (Section 7) using
semantic information about operations (i.e., which op-
erations requires node identifiers, and of which kind) to-
gether with dataflow analysis. The compiler introduces
the required node identifier generation operations explic-
itly in the appropriate places in the expression tree. If
node identifiers are not needed by a query, the Token
Stream is particularly compact. In this case, no space
is needed for node identifiers; moreover, the same Java
ELEMENT token object can be (re)used in this case to
represent all elements of the same kind (i.e., all elements
with the same name and type).

Since not every query needs reverse traversals, dif-
ferent kinds of node identifiers can be used for different
kinds of queries. As a consequence, the BEA XQuery en-
gine has two implementations of node identifiers for use
in processing those queries that actually do require node
identifiers. The engine uses light node identifiers for sim-
ple queries and heavy node identifiers for more complex
queries. Light node identifiers are based on a simple pre-
order numbering of the nodes; they can be used for du-
plicate elimination and for sorting nodes into document
order. Heavy node identifiers are based on a combination
of pre-order numbering, post-order numbering, and par-
ent reference caching. As a result, heavy node identifiers
can be used in queries that involve reverse traversals and
special comparison functions like precedes and follows.

Node identifiers are realized as a Java interface in
the BEA XQuery engine. This was done so that differ-
ent users of the engine can implement their own kinds of

node identifiers for their own internal purposes while en-
abling them to be used by the BEA engine during query
processing. Any implementation must of course be se-
mantically compliant with the XQuery data model (i.e.,
node identifiers must identify nodes uniquely and must
be usable for identity and ordering comparisons). Sup-
port for externally-defined node identifiers turns out to
be important to make it possible to efficiently integrate
the XQuery engine with an XML data store (Section 10).

5.3 Special Tokens

As described so far, the Token Stream is a fairly straight-
forward serial implementation of the XQuery data model
as defined by the W3C [FMM+03]. For performance rea-
sons, the BEA engine supports the following additional
kinds of tokens:

FullNodeTokens: Streaming at the level of individual
tokens is advantageous for memory footprint minimiza-
tion and lazy evaluation. However, it can also lead to
performance penalties in some cases since every oper-
ation must handle every token individually. To reduce
this overhead, the Token Stream additionally supports
FullNode tokens. A FullNode token represents an en-
tire node, i.e., it stands for a whole XML subtree. A
given FullNode token contains its name, type, and op-
tionally the node identifier of the node; additionalloy,
it contains a reference to a Token Stream for the sub-
tree, which itself may contain other FullNode tokens as
well. FullNode tokens are particularly useful to improve
the performance of queries that look only at the top-
level nodes of a sequence when the underlying data has
already been materialized (e.g., when the data already
resides in an XMLBean or in a DOM tree). For exam-
ple, FullNode tokens would be particularly helpful for
a query that returns the 1000th PurchaseOrder from a
sequence of PurchaseOrders:

/PurchaseOrder[1000]

If each PurchaseOrder is represented in the engine’s
XML input by a single FullNode token (rather than the
potentially large sequence of tokens containing all of the
lineitems and other details of the PurchaseOrder), eval-
uating this query involves skipping 999 FullNode tokens
rather than tens or hundreds of thousands of fine-grained
tokens. In essence, FullNode tokens provide a way to ef-
ficiently support navigation to the next sibling, a very
common operation in XML query processing, within the
Token Stream. The downside of FullNode tokens is that
they do imply a bit of additional overhead during parsing
(if they are being generated at that ttime) when all of the
details of a node end up being required anyway (in which
case the additional overhead is not paid for by a subse-
quent query processing cost savings). Choosing whether
or not to use FullNode tokens in situations other than
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when data is coming from a materialized XML store is
a decision left to the optimizer.

LazyText Tokens: In the example shown earlier in this
section, the post-validation Token Stream contained both
a TEXT token with a string that represents the value
”43.5” and a FLOAT token with a float that represents
the value 43.5. In the most general case, both are re-
tained because both representations might be needed by
a query. In addition, it is not always possible to derive
the original text representation from the float represen-
tation; for instance, the original text in the XML doc-
ument could have been ”0043.500”. (In contrast, it is
always possible to derive the float value 43.5 from the
text ”0043.500”, but it is generally worth materializing
the float value to save the repeated conversion cost.)
These observations led to the current design of the To-
ken Stream, which by default contains both representa-
tions. In order to operate more efficiently in cases where
both representations are not in fact needed, the engine
supports LazyText tokens. These tokens represent text
nodes, but unlike TEXT tokens, do not carry the actual
text value. Instead, they contain a simple pointer to the
typed (e.g., float) value of the data and will generate a
(canonical) text representation on demand.

Container Tokens: Some XQuery expressions involve
packaging the results of different expressions into a tu-
ple or (to use a model-neutral term) a container. One
example is the ORDER BY clause of FLWOR expressions,
which requires sorting a multi-variable binding sequence.
Another example is representng the results of joins from
relational data sources in an XQuery-based XML data
integration scenerio. To represent such tuples or contain-
ers of XML data, the Token Stream supports an addi-
tional pair of tokens: CONTAINER, which marks the be-
ginning of such a container, and END CONTAINER, which
marks the end. Containers can be nested, like elements,
and a CONTAINER token has an associated name, again
just like an ELEMENT token. The main difference is that
a CONTAINER token needs neither a type annotation nor
a node identifier under any circumstances. Unlike an el-
ement, it is just a lightweight physical ”wrapper token”
that has no constraints on what it can wrap (and no
logical side effects on what it is wrapping).

5.4 Token Stream Implementation

We now discuss several alternative ways to implement
the tokens of the Token Stream. Just as the BEA en-
gine permits different kinds of node identifiers (built-in
and exernally-defined), the BEA engine also permits dif-
ferent implementations for the various kinds of tokens.
There are built-in default implementations for each kind
of token, but external clients can define their own way
to represent tokens. Again, such externally-defined im-
plementations for tokens are particularly important if

the BEA engine is ever to be packageable with an exter-
nal XML data store (Section 10). Technically, each kind
of token is an interface that supports a set of methods
that are used at execution time in order to interpret the
token. For instance, the ELEMENT token is an interface
with methods to return the name, type, and node iden-
tifier (possibly null) of the element. Node Identifier, in
turn, is an interface that contains methods to compare
(equality, document order) two node identifiers. The en-
gine currently provides two built-in implementations of
these token interfaces.

Java Objects: The simplest way to implement tokens
is to provide a Java class for each kind of token. For
instance, a Java class that represents ELEMENT tokens
would have private members for the name, type, and
node identifier (possibly null). A Java class that repre-
sents TEXT tokens would have private members for the
node identifier (possibly null) and the text value as a
char array. A Java class that represents INTEGER tokens
would simply have an integer value as a private mem-
ber. This implementation of tokens is used in BEA’s
WLI product in order to process incoming XML mes-
sages. The BEA XML parser is a SAX parser, and for
each SAX event generated by the parser, a Java object
(i.e., token) that represents that event is generated.

Binary: A more sophisticated and compact implemen-
tation is used if XML data is supposed to be stored on
disk, or serialized in order to be processed by another
instance, without the need to re-parse and re-validate
the data later. This representation is referred to as Bi-
nary Token Stream. The Binary Token Stream format
is used in the WebLogic Integration product to persist
XML messages so that they can be used by multiple ac-
tivations of a business process, or even multiple business
processes, at different times without having to re-parsed
and/or re-validate the messages.

A Binary Token Stream consists of a header (<?binxml
version"2.0"?>) and a series of encodings of tokens.
Each token is encoded by one byte that indicates the
kind of the token and by encodings of the additional data
carried by the token (e.g., the value of an INTEGER token
or the name and type of an ELEMENT token). One partic-
ular feature of this implementation of the Token Stream
is its use of dictionary compression for the names and
types of elements and attributes. To enable dictionary-
based compression, the Binary Token Stream makes use
of pragma tokens. Pragma tokens are instructions for
clients that consume the Binary Token Stream. When-
ever a new element name (i.e., a string) is encountered,
a pragma token containing the name plus a short encod-
ing for the name is created to tell the client to insert
this name/encoding pair into the dictionary so that the
encoding can subsequently be used in all elements of
that name. Pragma tokens may also instruct clients to
flush the dictionary, in order to make room for new en-
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codings, and a special pragma token is used to signal the
end of the Binary Token Stream. This format is designed
to achieve decent compression while still supporting fast
processing; compression factors in the range of 2-4 are
not unusual from what we have seen on customer data.

6 Type System

XQuery is a strongly typed language with a rich type
system, so a key responsibility of a standard-compliant
XQuery compiler is to verify the type consistency of a
query with respect to its input sources and derive its
result type by deriving the partial types of each subex-
pression using type inference rules. Type information is
also important during the compiler’s query optimization
phase, as we will see later. The fact that the type system
of XQuery consists of a mixture of named and structural
typing makes this task interesting. Structural typing is
limited to the types of input parameters and return val-
ues of functions and operators in XQuery, as both simple
and complex XML types are named; however, during the
compiler’s type inference and query optimization phases,
complex type operations must be performed to infer re-
sult types (type derivation and construction) and to de-
termine whether a particular type is acceptable as input
for a function or an operator (type subsumption).

The XQuery type system [DFF+03] is based on XML
Schema [Fal01]. In addition to the usual data types found
in conventional programming languages, such as integer,
string, etc., and user-defined structures, XQuery’s type
system allows new types to be created using sequences
(e.g., integer followed by string), alternation (e.g., inte-
ger or string), shuffle-product (e.g., integer and string in
either order), and occurrences of those (zero or one, zero
or more, and one or more). Types are used by XQuery
to determine whether XML data that are given as input
to a certain operation is in the required form, hence the
proper type. To determine this, and for additional op-
timization purposes, the main questions that our type
system implementation has to be able to answer are:

1. Is one type a subtype of another?
2. Are two types equal?
3. Do two types intersect?

An XQuery type (e.g., (xs:integer | xs:string)*)
is similar in spirit to a regular expression. Regular ex-
pressions and XQuery types are naturally represented
using trees. Using trees to represent types allows them to
be constructed easily (by a compiler parsing an XQuery
expression, for example). While representing types as
trees seems natural, trees don’t allow the questions men-
tioned above to be answered easily. One reason why not
is because many different trees can represent the same
type.

Regular expressions and, thus, XQuery types can also
be represented using an extension of finite state automata

(FSA), where an XQuery type corresponds to a language
accepted by such an FSA. Simple XQuery types such
as xs:integer and xs:string are symbols comprising the
alphabet of the language. Unlike traditional FSAs, the
transitions in these extended FSAs can be labeled with
FSAs themselves, thereby providing a recursive compo-
sition of FSAs for recursive types. As a result, recur-
sive variants of all algorithms to operate on FSAs are
required and employed in the BEA streaming XQuery
engine.

It can be shown that with an appropriate FSA rep-
resentation (minimized deterministic FSA, mDFA) it is
possible to answer the questions above by performing
algebraic operations on FSAs (union, intersection, com-
plement). The details are beyond the scope of this paper;
here we aim to convey a basic sense of what the type sys-
tem does and some of the the challenges that had to be
overcome to implement it.

To answer the question ”Are two types equal?,” we
exploit the following observation: type T is equal to type
U only if T is a subtype of U and U is also a subtype of T.
Thus,“type equality” is easily mapped to “subtyping”.

To deal with subtyping, we exploit the following ob-
servation: type T is a subtype of type U only if the in-
tersection of T and the complement of U is empty. Since
the FSA intersection operation is extremely expensive,
we use DeMorgan’s laws in order to compute intersec-
tion: type T intersects type U if the complement of the
union of the complements of U and T is not empty.

Due to recursions, FSA algebra operations are very
expensive. It can be shown that the computational com-
plexity of these operations grows exponentially with the
complexity of the FSA. To alleviate this problem, the en-
gine uses caching—it aggressively caches all results com-
puted by the type system. Therefore, if the same pair of
types is compared several times during the compilation
(and execution) of a query, expensive FSA computation
is carried out only once. Caching is very effective because
the total number of types involved in a given query is
limited.

7 Query Compilation and Optimization

The first step in query processing is query compilation.
Given the complexity of this component, our main goal
while designing the compiler was to make it effective
but also extensible, flexible and simple. As described be-
low, we consistently used the principles of avoiding hard-
coded information and algorithms and using a declara-
tive approach whenever possible in order to keep the
compiler simple and extensible.

Architecturally, the XQuery compiler is composed of
six major components. Three of the compiler’s compo-
nents are managers: the Operation Manager, the Con-
text Manager, and the Expression Manager. These com-
ponents manage the major data structures employed by
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the compiler. The other three components are functional
components: the Query Parser, the Query Optimizer,
and the Code Generator. These components implement
the three main phases of query compilation and use the
services provided by the managers. We now examine
each of these six components in more detail.

7.1 Operation Manager

The first manager component is the Operation Man-
ager, which holds information about the first-order func-
tions and operators available for the processing of a par-
ticular query. We define the first-order functions to be
those functions that require only XML data model in-
stances as arguments in order to compute their results.
In other words, first-order functions do not take arti-
facts such as functions, types, or schema components as
arguments. Comparisons and arithmetics are good ex-
amples of first-order functions. In contrast, the XQuery
ORDER BY operator is not a first-order function be-
cause it takes functions as arguments; these functions
determine the values of each item to sort by.3. Simi-
larly, type casts and the XQuery treat-as operator are
also not first-order operators because they take XQuery
types as arguments. XQuery core algebra operators like
conditionals and node constructors could be indeed seen
as first-order operators (they only take data as input).
However, we preferred not to categorize them as “nor-
mal” first-order operators due to their special role and
the special treatment that they require during XQuery
compilation.

The Operation Manager maintains information about
the set of in-scope first-order operators, indexed by their
name (the Qname) and their arity. The first-order oper-
ators managed by the Operation Manager include both
the built-in XQuery operators as well as any external
functions, functions imported from modules, and local
XQuery functions. A single Java object models such an
operator, and adding or removing such an operator de-
scription from the set of in-scope functions and operators
can be done by simply adding this object to the Opera-
tion Manager’s hash table, i.e., without recompiling the
query processor code. Hence, our query processor is triv-
ially extensible in terms of first-order operators. (Exten-
sibility in terms of the second-order operations is not as
trivial, but is still relatively simple.)

The information that the Operation Manager main-
tains about each first-order operator includes the opera-
tor name and signature, semantic properties (see below),
and pointers to the runtime class implementing each op-
erator (required for code generation) and to the Java
code for type derivation of polymorphic operators (re-
quired for type checking). The semantic information in-

3 Note the difference between taking a function as argu-
ment and taking the result of the application of a function as
argument.

cludes (but is not limited to): the property of preserving
or introducing document order in the result, the property
of preserving or creating duplicate-free results, the com-
mutativity with the unordered operator, the property of
the operator to create new nodes in the result, whether
the operator is a map function4, whether the operator
can raise errors at runtime, and, finally, whether the op-
erator is a real function (i.e., returns the same result
given the same input)5 or not. This semantic informa-
tion is used during the optimization phase for equivalent
expression rewriting. The information describing the se-
mantic properties of the first-order operators that are
part of the built-in library is loaded while bootstrapping
the XQuery engine out of a declarative description.

7.2 Context Manager

The second manager, the Context Manager, is used in
the entire query processing lifecycle (compilation and ex-
ecution). Each phase of query processing (parsing, type
checking, optimization, execution) is done in a certain
context. The context holds a variety of environmental
properties. The XQuery standard defines which infor-
mation needs to be maintained in a static and dynamic
context of a query, including the in-scope variables (with
their types and values), the schema validation context,
the in-scope definitions (e.g., namespaces, functions, types,
schemas, collations), and the current default processing
specifications (e.g., element name namespace, function
namespace, strip whitespace parameter, collations).

The BEA XQuery engine’s context is an extension
of the static and dynamic context as specified in the
XQuery standard in the sense that it also includes all of
the other environmental properties and components that
allow the query processor to execute. For example, it in-
cludes the current managers that perform various tasks
during compilation and execution (e.g., the Type Man-
ager, the Schema Manager and the NodeIdentifier Man-
ager), the Entity Resolver that helps in resolving URIs
into physical resources, the Error Handler that holds the
logic of responding to errors and warnings raised during
query processing, the Thread Manager that provides the
query processor with new threads during asyncronous
calls, and the JDBC Connection Manager that provides
the query processor with JDBC connections for external
SQL calls. The Context interface is one of the most fun-
damental APIs in the BEA XQuery processor. Since the
engine code is structured as a library that can be em-
bedded in a variety of software components (Section 3),
we designed the Context in such a way that it can serve

4 A map function, as known from the functional program-
ming language world, is a function that takes a sequence as
input and whose application can be distributed over sequence
concatenation

5 Some XQuery operators like getCurrentDate() do not
have this property.
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as the only link between the calling software component
and the query processor library.

The same context is passed through all query pro-
cessing phases; thus, expressions (at compile time) and
iterators (at runtime) only exist in a certain context.
The context is logically composed of a hierarchy of lo-
cal contexts. Searching for information in the context
translates into searching from the local context recur-
sively up to the parent until the desired information is
found or the root is reached. The root of the hierarchy is
the base context, which holds all of the XQuery engine’s
default parameters (e.g., all functions in the XQuery
function library [MMW03]). This information is boot-
strapped from a declarative specification, as mentioned
earlier. The base context is not augmentable or change-
able, whereas local contexts can be augmented and/or
modified using the XDBC API (Section 9) or by compil-
ing XQuery prologs.

7.3 Expression Manager and Algebra

The central component of the XQuery compiler is the
Expression Manager. The expression manager holds the
internal representation for all kinds of XQuery expres-
sions (e.g., constants, variables, first-order expressions,
instance of, conditionals). XQuery expressions are roughly
equivalent in functionality to the algebraic query repre-
sentations used by most relational query engines. Our
internal representation for expressions shamelessly bor-
rows ideas from functional programming compilation,
relational query compilation, and object-oriented query
compilation—all adapted to XQuery, of course.

The BEA XQuery processor has an abstract class
Expression with subclasses for each kind of expression.
The simplest XQuery expressions are constants and vari-
ables. The BEA XQuery engine differentiates between
five types of variables: let, for, count, external, and func-
tion parameter variables. A variable has a name (repre-
sented by a Qname), a type, and potentially also a value.
All of the first-order expressions (e.g., boolean operators,
comparisons, arithmetics, union, intersection, and user-
defined functions) share a single internal representation.
A first-order expression has a pointer to the Operator
object in the Operation Manager (see above) plus its list
of arguments (which are themselves expression objects).
This modeling of expressions is somewhat different from
traditional relational query internal representations, but
it is appropriate since XQuery is an expression language
and is essential for keeping the code simple and extensi-
ble.

The engine does have separate representations for the
following kinds of expressions:

– conditionals (i.e., IfThenElse): these expressions hold
pointers to the three expressions that correspond to
their if, then, and else clauses.

– treat as, cast and instanceof: these expressions each
hold a pointer to the expression that computes their
argument and a pointer to their target type.

– node constructors: these expressions hold a pointer
to the list of expressions that produce their name (if
there is one), the content of the newly created node,
and an indication of the kind of node to be created.

– match: these expressions model a simple filter op-
eration that takes a sequence of nodes and a Node
Test as input, and returns those nodes from its input
sequence that match the given Node Test. Conse-
quently, a match expression holds a pointer to the
expression that creates the input sequence, plus a
NodeTest. A Node Test is a triple: node kind, node
name, and node type test. The name and type tests
can contain wildcards.
Second-order XQuery expressions are each handled

individually. Each kind of second-order expression (e.g.,
FLWOR, Map, let, sortby and quantifiers) has its own in-
ternal representation. Consider the Map expression as
an example. A Map in our internal algebra corresponds
to a simplified version of a FLWOR with a single FOR
variable and no LET, WHERE or ORDER BY clauses.
Such a Map is internally represented as a pair: a FOR
variable and the expression that corresponds to the RE-
TURN clause. The model for the FOR variable holds
the name of the variable plus the expression that cor-
responds to the sequence in the FOR clause. A LET
expression is very similar to a Map, the only difference
being that the variable is labeled as being a LET variable
rather than a FOR variable.

The translation of an XQuery query into an expres-
sion tree follows closely, but it is not identical to, the
recommendations of the W3C XQuery formal seman-
tics [DFF+03]. For example, the FOR clause of a FLWOR
query is translated into nested Maps, each of which de-
fines one variable; the LET clause into nested LET ex-
pressions; the WHERE clause into an IfThenElse ex-
pression; and, the ORDER BY clause into a SortBy ex-
pression. The process is illustrated using the following
example:

Q1:
for $line in $doc/Order/OrderLine
where xs:integer(data($line/SellersID)) eq 1
return <LineItem> {$line/Item/ID} </LineItem>

Figure 2 shows the expression tree for this query. This
query asks for line items in a purchase order document
that have a particular seller. This example involves the
following kinds of expressions:
– Map in order to represent the FOR clause in the

query
– FirstOrder expressions (denoted as FO in Figure 2) in

order to implement the navigation and predicates in
the query. For instance, () represents a FirstOrder ex-
pression that generates the empty sequence for items
that do not fulfill the predicate of the WHERE clause.
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– Match in order to represent XPath node tests
– Cast in order to represent type conversions
– IfThenElse in order to implement the WHERE clause

of the query
– NodeConstructor for the RETURN clause of the query
– Constant for the constant 1 in the predicate of the

WHERE clause
– For Variable in order to represent the $line variable

in the FLWOR expression
– External Variable in order to represent the $doc vari-

able.

Our algebraic internal representation is redundant in
the sense that we have models for both core and non-
core expressions. For example, we have representations
for FOR and LET expressions as well as for complex FLWOR
expressions. However, we do not have an internal rep-
resentation for path expressions, as they are normal-
ized immediately during parsing. Another characteris-
tic worth mentioning is that we do not make the dis-
tinction between a logical algebra and a physical alge-
bra, unlike traditional relational query compilers. This
distinction makes no sense for many kinds of XQuery
expressions, e.g., conditionals, instance of, typeswitch,
etc, or for most first-order expressions. For those op-
erations where multiple possible physical implementa-
tions are available (e.g., node constructors and joins), the
choice made by the optimizer is instead expressed via ex-
pression annotations. Those expression annotations are
used during code generation in order to generate the
right iterators to call at runtime.

The Expression Manager implements various func-
tionality required for query compilation. Examples are:

– copy and replacement: the expression manager sup-
ports a simple (recursive) copy of an expression, as
well as a copy through a substitution. A substitution
is a mapping from variables to expressions. The copy
of an expression e through a substitution S copies
the original expression e and replaces all the occur-
rences of the variables in e with the corresponding
expressions in S. This kind of copy is frequently used
during rewriting, for example, during view unfolding.
Many rewriting rules need a simple primitive for re-
placing a certain subexpression of an expression with
an equivalent one.

– expression equality: During optimization, there is fre-
quently a need to detect if two expressions are the
same; one important example is common subexpres-
sion factorization. The equivalence test is not a sim-
ple syntactical equality test; instead, it detects re-
namings of variables and returns the corresponding
substitutions as part of the result of the equivalence
test. However, the nature of the test is syntactical;
that is, this test does not test for all kinds of se-
mantic equality. Since XQuery is a Turing complete
language, the general problem of detecting equivalent
expressions is not decidable.

– variable usage analysis: for each expression, the ex-
pression manager detects whether the expression uses
a given variable or not, whether all of the variables
are used inside the expression, whether all of the free
variables are used inside the expression, as well as
more detailed information about the usage of a vari-
able inside an expression (e.g., whether the variable
is used as part of a loop, or is input to a recursive
function, and how many occurrences of the variable
the expression bears).

– operator usage analysis: this functionality is similar
to variable usage analysis.

– data flow analysis: many rewriting rules need to de-
tect the sources of the result of a certain expression.
A source is either a first-order function that com-
putes new nodes, a node constructor operator, or an
external variable. In order to do this analysis, we
use hard-coded information about the data flow of
second-order operators and the semantic information
about the first-order operators.

For each expression in the query tree, the type of its
input expressions is computed bottom up and checked
against the expected type for the given expression. More-
over, in the same pass, if the type checking constraints
are satisfied, the expected type of the result of the ex-
pression is computed. The type checking and type infer-
ence algorithms follow the rules of the XQuery formal
semantics [DFF+03] closely, with two major differences.
First, in certain cases the type inferred by the standard
XQuery rules is not precise enough for our needs, so our
implementation computes a more precise type6. The sec-
ond difference concerns the type checking rules. The type
checking rules of the XQuery formal semantics are pes-
simistic, in the sense that a static typing implementation
is required to raise a static type error for an operation if
there is a possibility that the operation in question may
fail at runtime. For many BEA applications, this behav-
ior is too strict; thus, we support a more optimistic type
checking algorithm where warnings are raised in some
situations, instead of static errors, and the operation is
allowed to proceed at runtime. It is of course possible
for an engine user to choose between the standard type
checking rules and the relaxed ones.

7.4 XQuery Parser

In addition to the three managers described in the pre-
vious subsections, the XQuery compiler has three func-
tional components: the Parser, the Optimizer and the
Code Generator. The parser translates an XQuery string
into the corresponding expression in our internal repre-
sentation (see, e.g., Figure 2). During parsing, the cur-
rent parsing context can be augmented with information

6 An XQuery implementation is allowed to do so if the
inferred type is a subtype of the standard inferred type.
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from the query prolog like new namespace definitions,
new function definitions, and so on. The main source of
complexity in the XQuery parser comes from the neces-
sity of keeping the language free of reserved keywords.
Because of this requirement, the parser must keep multi-
ple lexical states and perform complex state transitions
during parsing. In this environment, a big challenge (one
that we are still facing) is to provide users with high qual-
ity debugging and error information. In terms of imple-
mentation, we used the ANTLR parser generator, which
so far has been satisfactory for our needs.

As part of the parsing process, the XQuery expres-
sion is normalized. Some normalization transformations
are required by the XQuery formal semantics [DFF+03].
Other transformations, such as the elimination of path
expressions, are specific to the BEA engine and its alge-
bra. We will revisit normalization in more detail in the
next subsection.

7.5 Optimizer

The next important phase in query compilation is Query
Optimization. The optimizer’s task is the translation of

the expression generated by the parser into an equiva-
lent expression that is cheaper to evaluate. Tradition-
ally, query optimization has been defined as the process
of translating a query into an efficient, equivalent query
execution plan (QEP). In our case, both queries and ex-
ecution plans share the same model: they are both ex-
pressions modeled in the same algebra. The optimizer’s
task is, thus, the translation of the expression generated
by the parser into an equivalent expression, hopefully
cheaper to evaluate.

First, we define expression equivalence for the pur-
pose of optimization. Ideally, two expressions are equiv-
alent if they have the same type and, for every possible
input, and in the same context, they either produce the
same value as an output or they both produce the same
error. Unfortunately, this definition precludes many im-
portant optimizations. As a result, the optimizer of the
BEA engine relaxes this equivalence criterion. Accord-
ing to this relaxed definition, an expression E1 can be
rewritten into expression E2 if the following conditions
are fulfilled:

– the type of E2 must be a subtype of the type of E1

– the set of free variables in E2 must be a subset of the
set of free variables in E1
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– for every possible binding of the free variables, either
E1 or E2 raise errors or both expressions return the
same result. It is possble that both E1 and E2 return
errors, but that the errors are different. Most XQuery
operations can result in errors which are not pre-
dictable at compile time. As a result, almost any op-
eration reordering at compile time changes the query
result in the event of an error.

At the heart of the query optimizer is a Library of
Rewriting Rules. Each rewriting rule takes an expres-
sion and returns an equivalent expression (if the rule is
applicable) or null (if the rule is not applicable). Equiva-
lence of expressions is as defined above. Applicability of
a rule involves that the rewritten expression is expected
to have lower cost than the original expression.

The optimizer itself is built by the successive appli-
cation of such rewriting rules using heuristics. The Rule
Engine is the component that carries out this process.
The rule engine decides which rules are invoked and in
which order and to which expression. To this end, the
rule controler traverses the expression tree top to bot-
tom and applies the local transformations dictated by
each rewriting rule until saturation. The strategy of the
rule engine is specified declaratively. In practice, differ-
ent products that embed the XQuery engine have dif-
ferent strategies. For instance, the WLI product uses a
different strategy than the BEA message broker and the
BEA data integration product that is currently under de-
velopment using this XQuery engine will certainly have
yet another optimization strategy.

The set of rewriting rules that are currently in the
rule library can be classified as: (a) normalization rules,
whose purpose is to apply the basic normalization opera-
tions required by the correct XQuery semantics [DFF+03]
(e.g., introducing the implicit atomization, boolean ef-
fective values and casts), (b) simplification rules, whose
purpose is to put the query into a simpler, ”normal” form
and (c) cost-reduction rewriting rules that are supposed
to translate an expression into another, less expensive
expression to evaluate.

Examples of normalization rules are:

– adding the implicit atomization operator whenever
necessary

– adding the implicit type conversion operands (e.g
converting untyped values to the required type, adding
casts and promotion operations)

– normalizing away filter predicates that are part of
path expressions and translating them into FLWRs
and typeswitch

– translate treat as operations into typeswitch opera-
tions

– adding the boolean effective value

Examples of simplification rules are:

– inlining of XQuery user-defined non-recursive func-
tions

– replacing general generic comparisons with existen-
tial quantifiers

– dispatching generic comparisons and arithmetics to
type-specific operators

– simplifying typeswitch operations by eliminating the
unreachable causes

– translating typeswitch expressions into cascades of
conditionals and instance-of expressions

– unfolding the quantifier expressions with multiple vari-
ables into a cascade of quantifiers with single vari-
ables

– eliminating the existential and universal quantifiers
if applied on singleton sequences

– unnesting FLWOR expressions in the FOR and RE-
TURN clauses

– minimization of the set of FOR variables of a FLWOR
expression

– boolean constant propagation through the boolean
operators

– putting predicates into conjunctive normal form

The “cost-reduction” rewriting rules can be classified
into seven categories:

1. Removing unnecessary operations whenever possible.
A prominent example for such unnecessary opera-
tions are sort and duplicate elimination operations
which are defined implicitly in a query due to the se-
mantics of XPath expressions. Further examples are
redundant self operators, concatenate operators with
a single input, FOR expressions with a trivial RETURN,
FOR expressions that iterate over a single item, com-
putation of the effective boolean value, and unnec-
essary casts and treat as operations, and validation
operations are guaranteed to succeed.

2. Rewriting constant expressions and common subex-
pressions. For example, subexpressions that are exe-
cuted as part of a loop (i.e., in a FLWR, sort or quan-
tifier) but that do not depend on the loop variable are
factored out of the loop. Subexpressions that appear
multiple times in a query are also factored out and a
LET variable is introduced7. Subexpressions that can
be computed statically and whose results are small
are computed statically and replaced by their pre-
computed value.

3. Enabling streaming whenever possible. An important
example is rewriting expressions that use backward
navigation into expressions that use only forward nav-
igation whenever possible.

4. Dealing with node identifiers. As we mentioned ear-
lier, a great deal of optimization and memory effi-

7 A longer discussion is required with respect to the effec-
tiveness of common subexpression factorization. In XQuery,
common subexpression factorization is not always good idea.
Because of lazy evaluation and because of the streaming of
intermediate results, the recomputation of a subexpression
that is used multiple times can be less expensive than the
materialization for reuse.
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ciency is derived from the fact that the query en-
gine is not using node identifiers unless absolutely
required by the particular query. Special rules in the
optimizer do dataflow analysis in order to detect such
a need and eventually introduce the generate node
identifiers operations.

5. Exploiting schema information. The most important
rule in this class translates the expensive descendant()
operator into a sequence of children() operators
based on schema information, or introducing topN
operators based on cardinality information obtained
from schemas.

6. Carrying out operation reordering, if this is beneficial.
Notably, the FOR variables in a FLWR are reordered if
an unordered directive is present and there are no de-
pendent joins. Similarly the FOR variables of a quan-
tifier can be freely reordered in the absence of any
inter-dependency.

7. Transforming nested loop (non-dependent) joins and
outerjoins into hash-based joins. In the absence of
data statistics, this decision is based on heuristics
and possibly results in worse query execution plans.
The BEA optimizer does not use a cost model; it only

uses heuristics. There are several reasons for this. First,
it is very difficult to get and maintain statistics in the
Internet world. Obtaining statistics is particularly diffi-
cult for streaming XML data and message processing,
for which the BEA engine was designed. Without good
statistics, cost-based optimization is meaningless. Sec-
ond, even in the presence of good statistics, defining an
effective cost model for an XQuery engine is very diffi-
cult and probably as much work as developing the initial
engine itself. Third, it seems that optimizations that re-
quire costing are less important in XQuery than, say,
in SQL. For instance, FOR expressions (the dual to rela-
tional joins) can only be reordered in XQuery under cer-
tain circumstances. Obviously cost based optimization is
very important for XQuery in many application scenar-
ios, but we believe that an XQuery optimizer needs good
heuristics to compensate for the uncertainties described
above, and cost-based optimization simply has not been
very important for our particular target applications.

During query rewriting, the BEA optimizer makes
extensive use of both the semantic information associ-
ated with each operator (e.g., preserving document or-
der, creating duplicates, commutativity, etc.) and the
types inferred for expressions. Almost none of the cost-
reduction rewriting rules could be applied in the absence
of this information.

Another important task of the query optimizer is to
detect (and minimize) the need for data materialization.
The entire XQuery engine was designed with the chief
goal to stream data in and out of the query engine,
therefore minimizing the data footprint and eliminat-
ing blocking points in the execution. Nevertheless, some
queries require data materialization and/or blocking. In
addition to the traditional causes such as sorting, dupli-

cate elimination and aggregation, the value of a variable
must be materialized in three cases: when the variable is
used multiple times in a query, when the variable is used
inside a loop (FOR, sort or quantifiers), or when the vari-
able is an input of a recursive function. Another cause
for materialization is backward navigation that cannot
be transformed into forward navigation. Finally, the ex-
ecution of operators like descendant() requires materi-
alization under certain circumstances (see Section 8).

7.6 Code Generation

The expression produced by the query optimizer is the
input to the next phase: Code Generation. The goal of
this phase is to translate an expression into an exe-
cutable plan. An executable plan is represented as a tree
of Token Iterators. There is almost a one-to-one map-
ping between expressions and iterators so that this task
is quite simple: the iterator tree is built while traversing
the expression tree bottom up.

Only recursive functions require special attention.
Naively generating code for them results in infinite it-
erator trees. In order to avoid this situation, the engine
delays code generation for recursive functions until they
are actually executed (i.e., at runtime); the iterator tree
corresponding to a new iteration is unfolded at runtime
at the beginning of an iteration. We chose this way to
evaluate recursive functions for two reasons. First, code
generation is a relatively cheap operation (e.g., a clone
of the already generated query execution plan tree). Sec-
ond, the alternative would have been to have all the it-
erators in the query execution plan having to keep sepa-
rately the state for each iteration and use the right state
for each iteration. This alternative seemed to us to be
more complicated to implement, more expensive to ex-
ecute at runtime and, more importantly, it would have
penalized all operators, not only the ones used in recur-
sive functions.

8 Runtime System

The task of the Runtime System is to interpret a query
execution plan, which is modeled as a tree of Token It-
erators. The runtime system is composed of a library
of iterators containing implementations for all functions
and operators of the XQuery standard [MMW03] and for
all functions of the XQuery core (e.g., map) [DFF+03].
The main design goal of the runtime system is, of course,
performance. In order to achieve good performance the
runtime system works in a stream-based dataflow way
and avoids materialization of intermediate results when-
ever possible. Furthermore, the runtime system provides
generic implementations of all functions and operators;
at the same time, it is able to exploit certain function
and operator knowledge (in particular, type-related in-
formation) obtained at compile-time.
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8.1 Iterator Model

Like most SQL engines, the BEA streaming XQuery en-
gine is based on an iterator model [Gra93]. The reasons
for this choice are the same as in the relational world:
(a) modularity, (b) low main memory requirements, and
(c) avoidance of the (CPU and I/O) costs to material-
ize intermediate results. Furthermore, the iterator model
allows for lazy evaluation of expressions, which is par-
ticularly important for XQuery. Sometimes only a small
fraction of the result of a sub-expression must be com-
puted; a frequent example is existential quantification.

In the iterator model of the BEA engine, every func-
tion and operator is implemented as an iterator that
consumes zero, one, or multiple token streams produced
by its input iterators and returns a single stream of to-
kens. As in the traditional iterator model, all iterators
operate in three phases:

– open: prepare to produce results.
– next : produce next token of result stream; return null

as end-of-stream indication.
– close: release allocated resources and do clean-up work.

In addition, our iterators provide a peekNext() method
and a skipNext() method. The peekNext() function re-
turns the next token without consuming it. This function
is convenient for the implementation of certain XQuery
functions that need to look ahead in their inputs. The
skipNext() function fast-forwards to the next item in the
sequence being produced. This function is used by func-
tions that only need to look at the “tip of the iceberg”
(e.g., count or nodetest). Both peekNext() and skipNext()
are implemented in a generic way for all iterators so that
the need to support them does not increase the complex-
ity of the code base or the work required to add new
iterators. For skipNext(), however, specialized overrides
are provided for certain functions for performance rea-
sons; skipNext() can be made particularly fast if data is
materialized or input is composed of FullNode tokens
(Section 5.3), for example.

Another specific feature of the BEA iterator model
is its error handling mechanism. Every call to the next()
method of an iterator can potentially result in a failure.
Based on the semantics of XQuery, some failures can be
ignored, while other failures must be propagated to the
application and terminate the execution of the query. In
order to implement error handling, we made use of Java’s
exception handling mechanism. Again, we were able to
implement error handling in a generic way so that the
specific XQuery error handling rules did not have to be
implemented for each iterator individually.

8.2 Example Iterators

As mentioned at the beginning of this section, every
function and operator of the XQuery library [MMW03]

and core [DFF+03] are implemented as iterators. For
expensive functions (e.g., node constructors and joins),
several different implementations exist so that the best
implementation can be chosen by the compiler depend-
ing on the characteristics of a query. In all, the runtime
system contains implementations of more than 350 iter-
ators. To provide a sense of the kinds of iterators found
in the system, some examples follow:

Constant One of the simplest iterators is the Constant
iterator, which is used to evaluate constant expressions.
This iterator is used for XQuery literals such as “5” or
“Feb-18-2003”. For literals, the Constant iterator pro-
duces a stream with a single token. The Constant iter-
ator is also used for other constant expressions such as
“<foo>boo</foo>”. In this example, the result of the
element constructor is materialized at compile-time and
the Constant iterator is used to return the materialized
result at execution time.

Casts The semantics of XQuery involve numerous im-
plicit casts, some of which can be quite expensive. Some
casts require value transformations, e.g., from strings to
numerics. Some involve the extraction of typed values
from an element or attribute, while some require at-
omization [BCF+03], which takes a sequence as input
and returns a simple value. As mentioned in Section 7,
the compiler tries to determine the types of expressions
statically as precisely as possible so that casts can be
avoided or the most specific cast iterator can be used.
To this end, the cast iterators in the runtime system
are organized in a hierarchy. The most general cast it-
erator is expensive and is used when no static type can
be inferred (i.e., when the static type is xdt:untyped).
Cheaper, more specific casts are used when more infor-
mation can be deduced statically (e.g., if an expression
is known to have a simple type).

Materialization Although the BEA streaming XQuery
engine tries to stream data whenever possible, there are
situations where the materialization of intermediate re-
sults is necessary. One important situation in which ma-
terialization is necessary is in a query that uses the
results of a common sub-expression several times and
where (re-) computation of this sub-expression is ex-
pensive. Such queries are implemented using an iterator
factory. This factory takes the token stream produced
by the common sub-expression as input and allows the
dynamic generation of iterators that consume that in-
put. The factory consumes tokens from its input stream
on demand, driven by the fastest consumer. The factory
buffers the input stream and releases the buffered tokens
only when the last (slowest) consumer is finished.

ItemIterator The ItemIterator is a very useful itera-
tor; it is for cases where a sequence of items (according
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to the XQuery data model) needs to be read and pro-
cessed item by item. The ItemIterator takes an arbitrary
sequence as input. On its first use, the ItemIterator be-
gins to consume its input sequence and emits the token
sub-stream for its first (complete) item. If the first item
is an atomic value (e.g., an integer), the ItemIterator
emits a single token (representing the atomic value). If
the first item is instead an element node, the ItemItera-
tor emits all of the tokens that represent that element—
from its opening ELEMENT token through its matching
END ELEMENT token. (Like any iterator, of course, the
ItemIterator emits results one token at a time with each
call to its next() method.) When the ItemIterator fin-
ishes emitting an entire item from its input sequence,
it indicates end-of-stream; its caller then closes and re-
opens the iterator to advance to the next item in the
sequence.

Node Identifier Generation The XQuery data model
assigns a unique id to each node of an XML document
[FMM+03]. Based on this id, node comparisons, dupli-
cate elimination, and sorting in document order (among
other functions) are defined. In the BEA XQuery engine,
ids of nodes of incoming XML messages are generated
on the fly using specialized GenerateId iterators. Id gen-
eration is an expensive operation, and the memory re-
quirements for ids can become prohibitive, so different
types of ids and GenerateId iterators are used depending
on the requirements of a given query (Section 5.2). Most
queries can be processed using simple, light-weight ids
that are based only on a pre-order numbering of nodes;
with such ids, duplicate elimination and sorting in docu-
ment order can be implemented. Some queries, however,
cannot be processed using such light-weight ids; exam-
ples are queries that involve backward traversals (e.g.,
the XPath parent axis) or special node comparisons. To
evaluate such queries, and only for such queries, heavy
ids that are based on pre-order and post-order number-
ing and materialization of parent/child relationships are
generated. Furthermore, for certain queries, it is only
necessary to generate ids for root nodes (or for nodes up
to a certain level); again, a special version of the Gen-
erateId iterator is used in order to improve the perfor-
mance of such queries. The decision of which version of
ids and the GenerateId iterator to use is made at com-
pile time based on the characteristics of the query. In
fact, there are cases where no ids are needed to evaluate
a query; in such cases, the compiler generates no Gener-
ateId iterator at all. Furthermore, GenerateId iterators
are not needed if the input data is already parsed and
annotated with node identifiers; e.g., data from a data
store (Section 10).

XPath Steps Projections are implemented in XQuery
as XPath steps, typically using the child (“/”) and descend-
ant-or-self (“//”) axes. In order to exploit optimizations
based on type inference at compile-time, the runtime sys-

tem provides different iterators for these axes. For exam-
ple, there is a special version of child that stops early if
it is known from the schema that only one child matches
or if it is known that no more sub-elements are relevant
as soon as one sub-element of a particular type has been
found. Furthermore, the runtime system implements a
special algorithm to execute descendant-or-self. This al-
gorithm starts optimistically and assumes that the data
has no recursion (i.e., that an element is not nested in-
side another element with the same name). In this case,
the algorithm is fully stream-based and no intermediate
results need to be materialized. In bad cases, when re-
cursion is detected in the data, the algorithm adapts and
starts materializing data. In such cases, it behaves like
a traditional, stack-based algorithm in order to compute
descendants recursively.

8.3 Query Execution Example

We now consider an example to demonstrate in more
detail how the iterators of the runtime system stream
data:

for $x in $exp
return foo($x, $x)

In this example, $exp is assumed to be an exter-
nal variable containing an instance of the XQuery data
model; foo is a user-defined function that takes two items
as input, checks whether both inputs are PurchaseOrder
elements, and if so returns the PurchaseOrder element
with the earlier shipping date. If one of the inputs is not a
PurchaseOrder element, foo returns the empty sequence
as its result. (How foo is implemented as an iterator is
not described here.) Our example query simply returns
all PurchaseOrder elements in $exp and filters out all
other items.

Figure 3 shows the plan for this query as generated by
the compiler (Section 7). The query plan is based on ex-
pressions from the logical query algebra of the compiler.
The FOR expression of the query is represented by a Map
exression, the user-defined function is represented by ex-
pression foo, and all variables are represented by variable
expressions ($exp is an external variable expression and
the occurences of $x are for variable expressions, as dis-
cussed in Section 7.3).

Figure 4 shows the corresponding iterator tree and
includes information about the data flow dependencies
between the iterators. The most complex aspect of Fig-
ure 4 is its depiction of the mechanics to materialize
tokens and to ensure that foo is applied to each item in-
dividually. The MapIterator peeks into the output of the
$exp iterator in order to coordinate the process. How-
ever, the real consumer of the tokens of the $exp iter-
ator is the Materialization point from which tokens are
consumed in order to evaluate the function foo (i.e., the
RETURN operator of the query).
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foo

Map

$exp

$x $x

$x

Fig. 3 Example Query Evaluation Plan

The first point to observe is the role of the ItemIter-
ators at runtime. The ItemIterators ensure that the $exp
input is processed an item at a time. For instance, if the
first item of the $exp variable is indeed a PurchaseOrder
element (as desired by the foo function), then only the
tokens of this PurchaseOrder element are returned by
the ItemIterators. If the END ELEMENT token of that Pur-
chaseOrder element has been processed, then the ItemIt-
erators signal the end of the Token Stream (i.e., they re-
turn null when their next() method is called), and con-
sequently, the UdfIterator signals the end of the Token
Stream to the MapIterator. At this point, only the first
item (i.e., the first PurchaseOrder element) has been pro-
cessed, only the first item has been consumed from the
$exp iterator, and the rest of the sequence still needs
to be processed. In order to process the second item,
the MapIterator restarts the whole process. That is, the
buffer of the Materialization is flushed (because it is no
longer needed) and the states of the UdfIterator, VarIt-
erators for variable $x, and ItemIterators are reset by
calling the close() and open() methods on the UdfIter-
ator (which propagates the calls to its children, which
in turn propagate them down until the Materialization
point is reached). At this point, the entire iterator sub-
tree rooted at the UdfIterator is ready to process the
next item. In this way, each item of the $exp sequence is
processed individually.

For this particular query, Materialization is needed
because the input tokens are consumed twice. As indi-
cated in Figure 4, materialization happens lazily; tokens
are consumed and materialized from the $exp input only
as they are actually needed. In the beginning, the Ud-
fIterator that implements the foo function asks for just
a single token. Using this token, it decides whether the
input is a PurchaseOrder element, as requested. If it is
not a PurchaseOrder element (e.g., if it is some other el-
ement, document, or atomic value), then the UdfIterator
signals end-of-stream to the MapIterator. At this point
only the first token of the item of the $exp variable has
been processed and materialized. The other tokens of
that item, if any, are never consumed or materialized. In

VarIterator($exp)

ItemIterator

VarIterator($x)

ItemIterator

UdfIterator(foo)

VarIterator($x)

MapIterator

(Lazy) Materialization

Fig. 4 Example Iterator Tree

order to process the next item of the $exp variable, which
might indeed be a PurchaseOrder element that must be
considered for the query result, the MapIterator calls the
skipNext() method of the $exp iterator. (It is here that
an optimized skipNext() implementation has an oppor-
tunity to improve runtime performance by allowing the
engine to avoid ever touching the skipped tokens.)

9 XDBC Interface

The Java binding for the BEA XQuery engine is called
XDBC, as it was designed to look and behave much like
JDBC. The two APIs have similar features, including
the ability to pre-compile statements for repeated exe-
cution, facilities for binding per-execution variables in a
statement, and the ability to maintain separate execu-
tion contexts. Because of these similarities, and because
JDBC is a widely known and understood interface, we
used the same basic set of classes and, where appropri-
ate, even the same method names for XDBC. There is
currently an initiative to standardize a Java interface for
XML data called XQJ (JSR 225). BEA participates in
this standardization activity. In its current design, XQJ
has many important commonalities with XDBC. Once
the XQJ standard has fully materialized, we will either
make the XDBC interface upwardly compatible with it
or depracate the XDBC interface in favor of XQJ (at
least for external users).

9.1 Connections and Statements

The entry point into XDBC, as with JDBC, is a Con-
nection. A Connection is obtained via a static method,
getConnection(), on the DriverManager class. A Connec-
tion maintains an execution context internally, keeping
track of declared namespaces, types, and XQuery func-
tions among other things. In the current library imple-
mentation, XDBC and the XQuery engine run within
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the same JVM. Therefore, despite the name “Connec-
tion”, there is no networking involved, nor is there more
than one type of driver to manage.

From a Connection, applications can create two types
of XQuery statement objects: a Statement or a Pre-
paredStatement. Again, as with JDBC, a PreparedState-
ment differs from a simple Statement chiefly in the abil-
ity it provides to pre-compile an XQuery statement and
then execute it multiple times, optionally assigning dif-
ferent values to the unbound variables (i.e., the param-
eters) of the XQuery statement for each execution.

9.2 Parameterized Queries

With a PreparedStatement object, the application first
performs any required variable bindings using various
setType() methods. There are different setType() meth-
ods for the various XQuery primitive types, such as set-
String(), setInteger(), setURI(), setDate(), and so on.
Of particular importance is setComplex(), which allows
binding a variable to a token iterator which is poten-
tially the result of a separate query execution. This way,
chaining of XQuery queries is supported. It is also pos-
sible to specify the type of the Token Stream produced
by an iterator bound using the setComplex() method.

In order to facilitate the binding and re-binding of
external variables to an XQuery statement, we have ex-
tended the variable-related rules for XQuery so that it
is no longer required that all variables mentioned within
a statement be assigned values before use. As a result,
such statements will now compile legally. However, at-
tempting to execute a statement without binding all of
its unbound external variables will result in an excep-
tion. PreparedStatement also has methods for determin-
ing the set of unbound variables discovered by query
compilation, which is useful for tools (such as graphical
query editors) that need to handle prepared queries in a
generic fashion.

9.3 Execution of Queries

Once all external variables have been bound, a Prepared-
Statement can be executed using executeQuery(). This
method returns a Token Iterator representing the To-
ken Stream resulting from the statement’s execution. We
provide utility classes for doing basic conversions on To-
ken Iterators, such as serializing them as UNICODE or
in a binary format. PreparedStatement also offers other
features for specialized purposes, including a cloneState-
ment() method for creating a duplicate of a Prepared-
Statement that can then be re-bound and re-executed,
e.g., in a different thread.

10 XML Store Interface

The BEA XQuery engine is a full implementation of the
XQuery language. It is not, however, an XML database
system; in particular, it has no storage functionality of
its own. Instead, the engine was designed to be capa-
ble of working on top of different XML data stores and
querying XML data stored in different stores in a seam-
less way. For this purpose, a special store interface was
designed: data stores that implement this interface can
be packaged together with the BEA XQuery engine in
order to provide full XQuery support. There are two rea-
sons that we adopted this essentially store-neutral ap-
proach. First, there is a wide variety of XML storage
and indexing techniques in the world today, including re-
lational [FK99,STZ+99], native [FHK+02], and indexes
for XPath expressions [CSF+01,Gru02]. Second, there
are many different XML stores driven by many differ-
ent requirements, including XML caches, XML Beans,
transactional XML stores, and legacy data stores with
XML wrappers. Our aim is for it to be possible to use
the BEA engine for virtually all such stores. The key
idea is to extend those stores so that they expose their
data as a stream of tokens.

10.1 Collections

From the point of view of the BEA XQuery engine, a
data store is a set of XML collections. Each XML col-
lection is nothing more than an instance of the XQuery
data model [FMM+03], i.e., a sequence of items. For in-
stance, an XML document (like a PurchaseOrder) could
be a collection, or a sequence of nodes (say elements) and
simple values (such as integers) could be a collection as
well. In order to ensure deterministic updates, we im-
pose the following constraint: nodes can only be part of
one single collection. As a side-effect of this constraint,
of course, a node cannot have a parent that belongs to
a different collection than its own.

Each collection is uniquely identified by a URI. As
a result, the collection can be queried by the XQuery
engine by using the XQuery collection() function, which
takes a URI as parameter. In order to allow the XQuery
engine to read a collection, the store prescribes the fol-
lowing pair of functions as part of its API:

– TokenIterator getCollection(URI source)
– TokenIterator getCollectionIds(URI source)

Both functions expose the specified collection as a
Token Stream (Section 5) so that the data can be pro-
cessed directly by the BEA/XQuery engine. The dif-
ference between the two functions is that the second
function ensures that all tokens that represent nodes in
the Token Stream are annotated with node identifiers
(Section5.2), whereas the Token Stream returned by the
store when the first function is used is not annotated
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with node ids. The first function is thus called by the
BEA XQuery engine when the compiler has detected
that node ids are not needed to evaluate a given query.

Exposing XML data as a Token Stream and imple-
menting the interface described in Section 5 may seem
like a high burden for implementors of data stores. How-
ever, data store implementors can typically use as to-
kens their own internal representation of XML data.
As mentioned in Section 5.4, the BEA XQuery engine
supports user-defined implementations of the Token and
Node Identifier interfaces. In particular, a data store that
already supports a SAX interface can be extended eas-
ily in order to support the Token Stream interface. As a
result, no significant data marshalling between the store
and the XQuery engine is necessary, and very good per-
formance can be achieved.

10.2 Indexes

In addition to collections, a data store can define indexes.
An index is defined by means of two XQuery expressions:
one is an expression that describes the domain that is
indexed (e.g., all PurchaseOrder elements) and the sec-
ond is a parameterized expression that describes some
property of that domain (e.g., the shipping date). Note
that this property can be computed using any XQuery
expression that ranges over the indexed domain, not just
on projected fields as in traditional relational databases.
In order to allow the XQuery engine to make use of in-
dexes, the store must provide these two expressions for
all indexes as part of its API. This way, the compiler can
detect which indexes are useful for a given query and can
rewrite queries accordingly. Rewriting XQuery queries
in order to make use of indexes is a fairly straightfor-
ward application of answering queries using views tech-
niques [Hal01].

In order to use the indexes of a store at query execu-
tion time, the store must provide functions that probe
the index. Just as in any ordinary database system, there
should be several ways to probe the index; e.g., full in-
dex scan, range scan, or lookup of a certain key (e.g., a
specific shipping date). In each case, probing an index
results in the generation of a Token Stream; e.g., a Token
Stream that represents all matching purchase orders.

In the current design, the BEA XQuery engine has
several restrictions on the kind of indexes that it can
use. First, the domain that is indexed must be a se-
quence of nodes. Second, the property of that domain
that is indexed must be an atomic value and the values
must be homogeneous (i.e., they all must be instances of
the same XML Schema simple type). These restrictions
simplify significantly the integration of indexes at run-
time. It is possible to relax these conditions, but at the
moment, it seems that the most important use cases are
covered despite these restrictions. For instance, any kind
of indexing that is commonly carried out on relational
data meets these restrictions.

10.3 Updates

To date, there is no standard to define updates on XML
data. There are only proposals in the research commu-
nity (e.g., [TIHW01]), in industry (e.g., all vendors of
XML databases), and there is an internal draft from
the W3C XQuery working group [CFL+02]. Neverthe-
less, applications can already implement their own up-
date language using the BEA XQuery processor and an
XML data store.

As an example, consider the following update state-
ment using the syntax proposed in [CFL+02]:
INSERT <author>Florescu</author>
BEFORE document("www.dblp.org")//

article[title = "The BEA XQuery Processor"]/
author[. = "Hillery"]

This statement adds a new author element to an ar-
ticle with the title ”The BEA XQuery Processor” in the
DBLP database. The new element is inserted just be-
fore the author element for ”Hillery”. Obviously, the in-
sertion of new data in the store must be carried out by
the data store. However, the BEA XQuery engine can be
used to evaluate the expression that specifies the data
to be inserted (i.e., <author>Florescu</author> in the
example) as well as the expression that describes the
update target (i.e., the expression that specifies the ele-
ment for ”Hillary” in the BEFORE clause). Both of these
expressions can be arbitrarily complex.

In order to evaluate <author>Florescu</author>,
the XML store must provide a Token Factory. In this
particular example, this expression involves generating
an ELEMENT token, a TEXT token, and an END ELEMENT
token. All these tokens must be generated by the XML
store using its particular implementation for represent-
ing XML data. The role of the XQuery engine is to drive
the generation of new tokens (e.g., deciding which tokens
to generate, setting types, etc.) as part of its implemen-
tation of node constructors.

The second expression, which specifies the target of
insertion, can be evaluated just like any other XQuery
expression. The BEA XQuery engine implies no restric-
tions and has no specific requirements. In order to be
able to implement such an insert statement, however, it
is important that the XML store can identify the tar-
get for insertion based on the query result returned by
the XQuery engine. The simplest way to do this is to
annotate the query result with node identifiers; in this
example, the ELEMENT token for the author element for
”Hillery” needs to be annotated with the right node iden-
tifier so that the data store knows where to place the new
data into the collection. Although the example above is
very specific to the semantics of the particular insert
statement of [CFL+02] and to the BEA XQuery engine,
the approach is very general. The same principles can be
applied in order to implement other Update statements
such as the delete, replace, and complex Update state-
ments defined in [CFL+02]. In all cases, the BEA engine
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can be used to evaluate the expressions that are part of
these Update statements.

11 Performance Experiments and Results

This section presents the results of a set of performance
experiments that assess the compilation time, running
time, and memory footprint of the BEA streaming XQuery
engine for XML transformations based on use cases drawn
from BEA WLI customer scenerios and on the XMark
benchmark [SWK+02]. These experiments were carried
out on a PC with a 2.4 GHz Pentium 4 processor and
1 GB of main memory. The operating system was SuSE
Linux 9.0. The Java 2 Runtime Environment, Standard
Edition (build 1.4.2-b28), and the Java HotSpot Client
VM (build 1.4.2-b28) from Sun were used.

11.1 XML Transformations: Xalan vs. BEA Engine

The first experiment examines the performance of the
BEA streaming XQuery engine for typical operations
performed by customers of the WebLogic Integration
product, i.e., for transformations for which the engine
was designed to work well. As an alternative, XSLT
stylesheets [XSL02] were used to implement these same
use cases; since XSLT is a stable W3C recommenda-
tion, XSLT is commonly used in practice today in or-
der to implement these kinds of transformations. The
use cases tested here explore various basic XML trans-
formations on different kinds of XML messages. The
XSLT stylesheet tests were executed using Xalan-J ver-
sion 2.5.2 [XJ03]. The XQuery queries were (of course)
executed using the BEA streaming XQuery engine. In
both cases (XSLT and XQuery), the best possible formu-
lation was chosen if a transformation could be expressed
in different ways. Furthermore, to focus on relative en-
gine performance, we factored out XML parsing times
and only measured the running times of the transforma-
tions after the XML input had been parsed. This net
cost of XML transformations is the most relevant met-
ric for BEA’s WebLogic Integration product, as an XML
message is typically parsed once and then transformed
and processed several times over the course of its lifetime
in the system.

Table 1 shows the results. In all cases, executing
the XQuery expression on the BEA engine was much
faster than executing an equivalent XSLT stylesheet us-
ing Xalan. In the best case, the speed-up was a factor
of 82; there was no particular pattern or transformation
type for which the speed-up was especially high. There
are several factors that contributed to these speedups,
the two most important reasons being that XQuery is
easier to optimize (more declarative) than XSLT and
that the token streams used by the BEA engine can
be processed more efficiently than the document table
model used in Xalan. (Note: The document table model

replaced DOM as the XML representation in Xalan start-
ing with version 2.4 for the purpose of improving perfor-
mance; older, DOM-based versions of had worse perfor-
mance on our tests.)

11.2 XML Transformations: Compilation Time,
Memory Footprint

Table 2 shows the compile times for the BEA transfor-
mation queries using the BEA XQuery engine. As a ref-
erence, the table also contains the running times of the
queries. Two observations can be made. First, XQuery
transformations can be compiled and optimized in less
than a second. In this experiment, it took never more
than a quarter of a second to compile and optimize a
query, and it took less than 50 milliseconds to compile
most of the queries. (In general, type-checking and type-
related operations are the most expensive part of com-
pilation in the BEA XQuery compiler). The compilation
times for the BEA XQuery processor are essentially in
the same ballpark as the compilation times of commer-
cial SQL engines.

The second observation to be made from Table 2 is
that the compilation time was always significantly higher
than the running time for these particular XML trans-
formations. The reason for this is that these transfor-
mations are all relatively small, in-memory operations
(all of which need to execute very quickly when run
repeatedly), as opposed to database queries that incur
client/server communication times, I/O times, transac-
tion costs, and so on. This observation makes it clear
why it is so important to pre-compile queries in a prod-
uct like WebLogic Integration and why it is critical to
provide an interface like the XDBC interface in order to
support such pre-compilation. For this reason, WebLogic
Integration precompiles the transformation queries for a
given type of business process at deployment time; the
precompiled plans are cloned when a new instance of
the process is created and are simply parameter-bound
and then executed when the transformations need to be
invoked at runtime.

Table 2 also shows the memory footprint taken at
runtime for executing the XML transformations. Here,
the Token Stream was implemented as Java objects (Sec-
tion 5.4). For most transformations, the memory require-
ments were just a few kilobytes. The heaviest use case
here involved complex manipulation of strings and re-
quired almost 400 kilobytes of main memory. This set
of customer use cases also involved two transformations
with joins; these two required 100 kilobytes and 70 kilo-
byes of main memory.
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description XQuery [msecs] XSLT [msecs] Speed-Up

Straight element mapping 0.06 5.18 82.24
Element mapping to different names 0.13 4.27 32.58
Element combination 0.11 4.09 36.21
Element explosion 0.16 5.66 35.18
Element to attribute mapping 0.19 4.15 22.30
Attribute to element mapping 0.18 3.92 21.30
Attr. to attr. mapping - straight copy 0.37 4.12 11.13
Attr. to attr. mapping - name mapping 0.39 4.08 10.45
Repeating group to repeating group 0.17 3.89 23.32
Static fields and rep. grp. to rep. grp. 0.25 4.08 16.59
Re-grouping by key fields 1.47 5.66 3.85
Decreasing loop nesting 0.31 4.89 15.87
Incr. loop nesting 0.16 4.03 26.00
Incr. loop nesting using an input key 1.51 5.66 3.75
Conditional repeating group transf. 0.39 3.83 9.84
String functions 2.74 5.26 1.92
Aggregation of data 0.18 3.79 21.55
Parameterized queries 0.18 3.75 21.20
Parameterized transformations 0.08 3.83 50.38
Union: docs of the same schema 0.15 4.02 26.81
Union: docs of different schemas 0.66 4.13 6.24
Joining multiple docs 1.46 5.70 3.89
Joining with substitution 1.41 5.54 3.92
Repeated key value lookup 0.46 4.31 9.47

Table 1 BEA Customer Use Cases - BEA Engine (XQuery) vs. Xalan (XSLT): Running Time [msecs], Speed-Up

description Compiler [msecs] Runtime [msecs] Memory [KB]

Straight element mapping 12.3 0.06 1.1
Element mapping to different names 28.0 0.13 3.6
Element combination 27.7 0.11 2.5
Element explosion 30.5 0.16 9.8
Element to attribute mapping 36.4 0.19 4.8
Attribute to element mapping 53.9 0.18 4.0
Attr. to attr. mapping - straight copy 67.0 0.37 11.5
Attr. to attr. mapping - name mapping 71.1 0.39 12.0
Repeating group to repeating group 20.9 0.17 5.8
Static fields and rep. grp. to rep. grp. 36.8 0.25 8.6
Re-grouping by key fields 66.0 1.47 52.3
Decreasing loop nesting 29.8 0.31 9.1
Incr. loop nesting 19.7 0.16 3.4
Incr. loop nesting using an input key 42.2 1.51 58.1
Conditional repeating group transf. 40.9 0.39 12.5
String functions 253.2 2.74 396.9
Aggregation of data 16.6 0.18 5.5
Parameterized queries 12.9 0.18 6.1
Parameterized transformations 16.6 0.08 1.8
Union: docs of the same schema 11.2 0.15 1.5
Union: docs of different schemas 52.7 0.66 36.7
Joining multiple docs 48.0 1.46 99.7
Joining with substitution 66.9 1.41 68.3
Repeated key value lookup 57.4 0.46 120.0

Table 2 BEA Customer Use Cases: Compile Time [msecs], Running Time [msecs], Memory [KB]
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description full doc order dup-elim ids
[msecs] [msecs] Speed-Up [msecs] Speed-Up [msecs] Speed-Up

Straight element mapping 0.06 1.15 18.25 0.99 15.67 0.72 11.46
Element mapping to different names 0.13 1.28 9.76 1.01 7.70 0.77 5.90
Element combination 0.11 1.28 11.28 1.01 8.94 0.80 7.04
Element explosion 0.16 1.33 8.27 1.08 6.72 0.81 5.04
Element to attribute mapping 0.19 1.43 7.67 1.13 6.08 0.87 4.66
Attribute to element mapping 0.18 1.46 7.91 1.19 6.48 0.98 5.34
Attr. to attr. mapping - straight copy 0.37 1.67 4.51 1.39 3.75 1.13 3.06
Attr. to attr. mapping - name mapping 0.39 1.71 4.39 1.39 3.57 1.01 2.58
Repeating group to repeating group 0.17 1.31 7.86 1.37 8.23 0.82 4.94
Static fields and rep. grp. to rep. grp. 0.25 1.40 5.70 1.51 6.15 0.89 3.63
Re-grouping by key fields 1.47 1.92 1.30 1.70 1.15 1.48 1.01
Decreasing loop nesting 0.31 1.50 4.88 1.27 4.13 0.99 3.21
Incr. loop nesting 0.16 1.32 8.52 1.02 6.61 0.88 5.65
Incr. loop nesting using an input key 1.51 2.16 1.43 1.92 1.27 1.57 1.04
Conditional repeating group transf. 0.39 1.91 4.91 1.29 3.31 1.06 2.73
String functions 2.74 4.80 1.75 4.29 1.57 3.69 1.35
Aggregation of data 0.18 1.34 7.60 1.17 6.62 0.81 4.61
Parameterized queries 0.18 1.69 9.55 1.14 6.42 0.86 4.83
Parameterized transformations 0.08 1.25 16.47 1.21 15.89 0.74 9.68
Union: docs of the same schema 0.15 1.23 8.22 1.00 6.66 0.79 5.25
Union: docs of different schemas 0.66 2.61 3.94 2.13 3.22 1.27 1.92
Joining multiple docs 1.46 2.22 1.51 2.03 1.39 1.62 1.11
Joining with substitution 1.41 2.85 2.01 2.44 1.73 1.97 1.40
Repeated key value lookup 0.46 1.76 3.86 1.55 3.40 1.19 2.61

Table 3 BEA Customer Use Cases: Impact of Optimization Rules: Running Time [msecs], Speed-Up

11.3 XML Transformations: Significance of
Optimization

In the third experiment, we studied the impact of the
most important optimization rules of the XQuery com-
piler (Section 7). In order to study the impact of an
optimization rule, we disabled that rule in the XQuery
compiler, compiled the queries, and measured the run-
ning times of the resulting query evaluation plans. Com-
paring the running times of these query evaluation plans
with the running times of the (regular) plans that were
produced with all rules enabled, shows how important
that rule is for a given query workload. The following
three optimization rules were studied in this way:
– doc order: This rule eliminates unnecessary opera-

tors that sort data into document order. As men-
tioned in Section 7, XPath semantics involve sorting
in document order after every path step. In many sit-
uations, however, sorting is unnecessary (e.g., for a
simple child step) because the result is already sorted.
(This is similar to “interesting order” rules in rela-
tional optimization.)

– dup elim: This rule eliminates unnecessary operators
for duplicate elimination. Again, the relevance of this
rule is due to the special semantics of XPath steps.

– ids: This rule controls whether, and which, node iden-
tifiers are generated for a query. If this rule is turned
off, node identifiers will be generated at runtime to
evaluate all queries, even though only a few of the
queries may really need node identifiers.

Disabling these optimization rules had little impact
on the compilation time, but doing so increased the run-
ning times of the queries, in several cases dramatically
(by a factor of 18 in one extreme case). Table 3 shows the
resulting running times (depending on the optimization
rule) and the factor by which the running time increased,
again for the WebLogic Integration data transformation
use cases. As a baseline, Table 3 shows the running times
of the queries if all optimizations are turned on (the
full column). Almost all queries benefited significantly
from all of these three optimization rules, so it is safe
to conclude that all these rules should be enabled at all
times. (Fortunately, disabling an optimization rule never
resulted in any runtime improvements.)

11.4 XMark Benchmark

Table 4 shows the compilation times, running times, and
memory requirements of the BEA XQuery engine for
the XMark benchmark [SWK+02]. The XMark bench-
mark was designed for testing the performance of XML
database systems using rather traditional database work-
loads (e.g., selections on large collections of data) rather
than data transformations. The benchmark includes a
suite of 20 benchmark queries that test a large variety
of features of the XQuery language. Furthermore, the
XMark benchmark specifies how the XML data must be
generated and defines a scaling factor in order to pro-
duce databases of different sizes. Table 4 shows the run-
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120 KB 3.8 MB
Query Compiler [msecs] Runtime [msecs] Memory [KB] Runtime Memory

Q1 46.5 3.43 135.9 56.3 2,063.3
Q2 47.6 0.93 5.5 20.4 156.6
Q3 119.7 9.47 491.6 273.7 2,165.4
Q4 62.3 8.78 476.8 267.7 2,166.8
Q5 23.3 1.24 62.7 33.7 1,208.7
Q6 11.1 2.12 0.6 71.6 0.6
Q7 15.2 20.27 216.6 630.8 5,113.4
Q8 69.3 37.08 640.8 26,060.2 7,945.0
Q9 114.8 51.12 821.6 33,999.7 12,278.1
Q10 211.7 18.99 520.2 3,547.5 13,154.6
Q11 65.5 22.54 535.1 14,279.6 8,011.6
Q12 71.7 9.39 423.5 4,981.0 8,010.4
Q13 28.4 0.35 8.5 11.5 324.8
Q14 19.6 8.49 434.5 283.1 3,141.2
Q15 100.7 0.39 2.3 13.0 58.6
Q16 96.4 0.99 48.2 29.2 898.8
Q17 26.4 1.62 82.5 46.7 1,581.5
Q18 20.7 0.94 44.3 28.3 434.7
Q19 30.3 4.15 105.4 144.2 3,131.2
Q20 59.8 5.35 199.3 185.8 4,124.3

Table 4 XMark Benchmark: Compile Time [msecs], Running Time [msecs], Memory [KB],120KB and 3.8 MB Database

ning times and memory requirements of the 20 XMark
queries on databases of size 120 KB and 3.8 MB. Again,
only the running times of the BEA engine on parsed
XML input are reported. As a baseline, using the Xerces
parser [XJ00], parsing the 120 KB XML database takes
73 milliseconds and parsing the 3.8 MB XML database
takes 1580 milliseconds.

The purpose of trying these experiments was simply
to stress-test the BEA engine, as neither the nature of
the workload nor the sizes of the benchmark databases
are representative of use cases for which the implemen-
tation of the BEA engine was tuned. Nevertheless, all
XMark queries could be executed in 50 milliseconds or
less for the 120 KB XML database. In other words, exe-
cuting the XMark queries was always cheaper than pars-
ing the document. These results confirm that the BEA
engine is capable of processing XML messages of sizes
up to a few 100 KB regardless of which type of queries
need to be processed.

For the 3.8 MB XML database, the measured run-
ning times were in the range of 10 milliseconds up to 34
seconds (Q9). The BEA engine was found to be robust
in all cases, but it is clear to us from these numbers that
the running times can be improved; 3.8 MB is a much
larger input size than what the current implementation
of the engine was tuned for. (The engine was designed
to be extensible in the future in order to scale to such
scenarios, but doing so has not been an actual product
requirement so far.)

Turning to the compilation times, it can be observed
that, again, the query compilation times were always less
than a second, even for the most complex XMark queries.
Looking at the memory footprint, it can be seen that it

was rather high in the case of the XMark experiments. In
the most extreme case, the memory requirements were
more than three times as high as the database alone (see
Q9 and Q10 for the large database). Again, the engine
can be tuned in the future in order to reduce the mem-
ory requirements in this situation (e.g., by using a dif-
ferent implementation for the token stream, as described
in Section 5.4).

Lastly, Tables 5 and 6 show the impact of the three
optimization rules that were studied in the previous sub-
section on the XMark benchmark queries for both the
small and large databases. Again, the key observation
from before is the same: All three optimizations are nec-
essary, but their effectiveness depends on the particu-
lar query. Comparing the speed-up factors in the two
tables, the optimization rules were, as an overall trend,
more important for the large database than for the small
database (as one would expect).

12 Related Efforts

Although the XQuery language specification has not yet
reached Recommendation status, there are significant ef-
forts both in industry and academia to implement XQuery
and to use it for different application scenarios. Vir-
tually all major database vendors are currently work-
ing on extending their database products and/or estab-
lishing new products based on XQuery. In order to ex-
tend relational databases, the SQL/X standard is also
emerging [EM02], and there is currently discussion in
the SQL/X world about possibly embedding XQuery as
an XML-processing sublanguage in SQL. Furthermore,
vendors of native XML database systems (e.g., Software
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Query full doc order dup-elim ids
[msecs] [msecs] Speed-Up [msecs] Speed-Up [msecs] Speed-Up

Q1 3.43 13.58 3.96 9.44 2.75 7.89 2.30
Q2 0.93 14.19 15.26 9.50 10.22 5.34 5.74
Q3 9.47 20.09 2.12 13.95 1.47 10.10 1.07
Q4 8.78 22.73 2.59 15.14 1.72 8.42 0.96
Q5 1.24 11.52 9.29 7.75 6.25 5.39 4.35
Q6 2.12 11.05 5.21 7.83 3.69 5.65 2.67
Q7 20.27 28.14 1.39 23.30 1.15 21.98 1.08
Q8 37.08 68.75 1.85 54.48 1.47 48.49 1.31
Q9 51.12 76.90 1.50 67.34 1.32 55.67 1.09
Q10 18.99 41.43 2.18 37.26 1.96 19.79 1.04
Q11 22.54 50.40 2.24 40.96 1.82 31.14 1.38
Q12 9.39 37.13 3.95 25.65 2.73 16.61 1.77
Q13 0.35 10.40 29.71 7.01 20.03 4.68 13.37
Q14 8.49 17.25 2.03 12.77 1.50 10.10 1.19
Q15 0.39 10.06 25.79 8.26 21.18 5.14 13.18
Q16 0.99 11.58 11.70 8.37 8.45 5.13 5.18
Q17 1.62 12.49 7.71 9.51 5.87 6.93 4.28
Q18 0.94 11.67 12.41 9.55 10.16 6.47 6.88
Q19 4.15 15.69 3.78 11.43 2.75 8.60 2.07
Q20 5.35 16.47 3.08 13.09 2.45 10.10 1.89

Table 5 Impact of Optimization Rules, XMark Benchmark (120 KB): Running Time [msecs], Speed-Up

Query full doc order dup-elim ids
[msecs] [msecs] Speed-Up [msecs] Speed-Up [msecs] Speed-Up

Q1 56.30 390.30 6.93 235.90 4.19 179.80 3.19
Q2 20.40 418.60 20.52 316.10 15.50 145.60 7.14
Q3 273.70 553.70 2.02 417.20 1.52 272.20 0.99
Q4 267.70 576.30 2.15 494.00 1.85 251.10 0.94
Q5 33.70 378.90 11.24 251.10 7.45 163.60 4.85
Q6 71.60 415.30 5.80 305.10 4.26 177.90 2.48
Q7 630.80 1,000.50 1.59 858.90 1.36 795.20 1.26
Q8 26,060.20 29,789.10 1.14 28,251.20 1.08 26,305.30 1.01
Q9 33,999.70 38,289.90 1.13 36,081.20 1.06 33,611.60 0.99
Q10 3547.50 4442.70 1.25 4316.70 1.22 3651.10 1.03
Q11 14,279.60 19,756.80 1.38 18,022.40 1.26 15,150.90 1.06
Q12 4,981.00 7,372.70 1.48 6,316.30 1.27 5,411.70 1.09
Q13 11.50 351.20 30.54 238.80 20.77 143.70 12.50
Q14 283.10 497.00 1.76 422.20 1.49 339.50 1.20
Q15 13.00 355.50 27.35 239.90 18.45 146.30 11.25
Q16 29.20 382.90 13.11 245.80 8.42 164.60 5.64
Q17 46.70 393.70 8.43 297.20 6.36 181.80 3.89
Q18 28.30 402.50 14.22 305.70 10.80 161.50 5.71
Q19 144.20 505.80 3.51 371.40 2.58 297.30 2.06
Q20 185.80 577.40 3.11 439.70 2.37 358.40 1.93

Table 6 Impact of Optimization Rules, XMark Benchmark (3.8 MB): Running Time [msecs], Speed-Up

AG) are naturally using XQuery as a query interface
for their product. In addition, there are a number of
start-ups and open-source initiatives that are working
on XQuery implementations. A list of public XQuery
implementations and links to Web demos can be found
on the home page of the W3C XQuery Working Group:
www.w3c.org/XML/Query.

In the research community, a number of related as-
pects of XQuery have been addressed recently. To name
just a few of the most recent results: [LMP02] describes

a stream-based implementation of a subset of XQuery
using transducers, and [DFZF03] shows how informa-
tion filters defined as XPath expressions (which are also
a subset of XQuery, of course) can be implemented us-
ing FSAs. Finally, [GS03] and [PC03] are two very re-
cent papers on techniques for implementing XQuery for
streaming XML data.
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13 Conclusion

This paper has described the design, implementation,
and performance characteristics of the BEA streaming
XQuery engine. Unlike most other XQuery implemen-
tations, this engine is fully compliant with the XQuery
specifications of the W3C. Currently, the engine imple-
ments the August 2002 version of the XQuery specifi-
cations. We are currently amending the implementation
taking the November 2003 version of the specifications
into account; the November 2003 version is the last ver-
sion before XQuery 1.0 formally reaches Recommenda-
tion status. As we have described, the BEA XQuery en-
gine is a central component of BEA’s WebLogic Integra-
tion (WLI) 8.1 product. As such, it was tuned to pro-
vide high performance for XML message processing use
cases. Experiments using real customer use cases con-
firm that it indeed has very good performance for such
applications; in fact, it significantly outperforms Xalan,
a popular XSLT processor that has been under devel-
opment for several years and has been tuned for similar
applications.
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